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Inhomogeneous melting in anisotropically confined two-dimensional clusters
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Molecular dynamic simulations are performed to investigate the melting process of two-dimensional clusters
of classical charged particles trapped in an anisotropic parabolic potential. The confined particles interact
through a repulsive potential. We find that the eccentricity of the confinement potential strongly affects the
melting pattern of such clusters. Increasing the eccentricity of the confinement potential drives the system
through three different melting regimes. Inhomogeneous melting is the typical melting process for anisotrop-
ically confined clusters and its appearance in small systems occurs in a distinct form called here internal
intershell melting. The latter involves only particles in the center of the cluster while particles on the far left
and right of the cluster are still ordered having a much higher melting temperature. Using the Lindemann’s
criterion the melting temperatures are determined as a function of the different parameters. The internal
intershell melting process is found for both long-range (i.e., logarithmic) and short-range (i.e., screened Cou-
lomb) interparticle interaction. Decreasing the range of the interparticle interaction increases the eccentricity of

the confinement potential for which internal intershell melting can occur.

DOLI: 10.1103/PhysRevE.74.031107

I. INTRODUCTION

During the past several years many efforts have been di-
rected to understanding static and dynamical properties of
mesoscopic devices in which the interacting particles are lat-
erally confined. Typical experimental realizations of such
two-dimensional (2D) systems include electrons on the sur-
face of liquid helium [1], electrons in quantum dots [2], col-
loidal particles [3], vortices in mesoscopic-shaped supercon-
ductors [4,5], confined plasma crystals [6], and a confined
system of metallic balls [7,8].

The interparticle interaction ranges from a Coulomb po-
tential, logarithmic interaction, screened Coulomb to a dipole
interaction. Vortices in a film of liquid helium interact
through a logarithmic potential [9], as do a low concentration
of vortices in a type II superconducting 2D film [10]. The
logarithmic interaction between vortices was used to study
the stable vortex configurations in a disk-shaped supercon-
ductor [11,12]. Recently, it was shown [7,8] that the configu-
rations of charged metallic balls placed on the bottom of a
plane capacitor could be described by a logarithmic interpar-
ticle potential.

Historically, Wigner [13] predicted in 1934 that electrons
in a three-dimensional Fermi system at low temperature and
density undergo an electron-liquid to electron-crystal phase
transition. Such an electron-crystal is called a Wigner crystal.
To the best of our knowledge no clear observation of such an
electron crystal in three dimensions (3D) has been made up
to now. In 1971 Crandall and Williams [14] noted that an
analogous phase transition should occur in a classical 2D
electron system at sufficiently high density which was first
observed by Grimes and Adams [1] in an electron gas con-
fined above the surface of liquid helium. For this kind of
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system with a circular symmetric interaction potential and in
the absence of a corrugated surface, the solid phase with the
lowest energy has a triangular lattice structure independent
of the electron density [15]. However, a 2D confined system
with a finite number of ions or electrons does not crystallize
in a triangular lattice (Wigner crystal), but the particles are
arranged in a shell structure as was predicted in Ref. [16].
For a large finite cluster the structure is due to the competi-
tion between the ordering into a triangular lattice symmetry
and the circular symmetry imposed by the confining
potential.

Reference [8] investigated experimentally the effect of the
anisotropic confinement on the ground and metastable states
of metallic balls trapped by an anisotropic confinement po-
tential. It was shown that the asymmetry of the confinement
potential induces various rearrangements of the particles, ac-
cording to their number and the asymmetry of the potential.
They also investigated metastable configurations of the sys-
tem and well-defined triangular structures, which are induced
by the eccentricity of the confinement potential. This experi-
mental work [8], inspired us [17] to investigate the effect of
the symmetry of the confinement on the configurations of the
particles. We considered a model of classical charged par-
ticles interacting through a logarithmic interaction potential
as suggested by the experiment. We reobtained theoretically
all configurations observed in Ref. [8]. Many transitions as a
function of the eccentricity of the confinement potential were
found and could be classified as first and second order,
which, respectively, exhibit a discontinuity in the first and
second derivative of the energy. Also we showed that these
transitions affect the eigenmode spectrum of the system. In
an earlier work [18], Coulomb interacting particles confined
by an elliptic potential were investigated theoretically, but at
that time no experimental results were available.

Phase transitions in two-dimensional large crystals have
mainly been described by changes in the asymptotic behav-
ior of spatial correlation functions. For instance, the
Kosterlitz-Thouless-Halperin-Nelson- Young (KTHNY)
theory predicts a two-step melting scenario according to
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which the liquid phase is reached when bond-orientational
correlations become short range [19-24]. This scenario dif-
fers considerably from what is generally predicted to occur
with small 2D clusters in an isotropic trap when the tempera-
ture is raised. For the latter system, melting is theoretically
predicted to occur via a two-step process [16,25-27]. At very
low temperature, each particle is thermally excited in its lo-
cal potential. Upon increasing the temperature, angular rota-
tion becomes possible where orientational order between ad-
jacent shells is lost, which is called angular melting.
Consecutively, for higher temperatures an intrashell melting
occurs and at the same time radial diffusion between shells
takes place.

In this paper we investigate how the different melting
processes are influenced by the geometry of the confinement
potential. Therefore, we study the melting process in 2D
model systems of N equally charged particles trapped by an
elliptic confinement potential and interacting through a re-
pulsive interparticle potential. We focus on the effect of the
eccentricity of the confinement potential on the melting pro-
cess of the system. We found that the eccentricity of the
confinement potential induced different melting processes;
some of them we found are different from the circular con-
fined system. The dependence of these melting processes on
the range of the interparticle potential is studied by consid-
ering a logarithmic and screened Coulomb interparticle po-
tential. For sufficient large asymmetry of the confinement we
found a temperature-induced breakup of the sample in differ-
ent regions, which have a different melting temperature.

The paper is organized as follows. In Sec. II our model
system and the methodology used to find stable configura-
tions is given. In Sec. III we deal with the system of classical
particles interacting through a logarithmic interparticle po-
tential. First, we investigate qualitatively the melting pro-
cesses in relatively small clusters of particles N=6, 12, 13
and 30. These examples concern clusters with a distinct num-
ber of shells and provide an understanding of the main melt-
ing processes occurring in anisotropic clusters. Next, the ef-
fect on inhomogeneous melting by the size of the cluster is
investigated and melting temperatures are obtained. In Sec.
IV we investigate how our results depend on the type of
interaction considering a cluster with N=13 particles for a
screened Coulomb interparticle potential. Finally, in Sec. V
we present our conclusions.

II. MODEL AND NUMERICAL APPROACH

We study a 2D model system of N equally charged par-
ticles in an elliptic confinement potential and interacting
through a repulsive potential. The potential energy of the
system is given by

N

1
E= E Em(wéxxl + wO\yz) +
i=1

(1)
i>j

where m is the mass of the particle, r;=(x;,y;) is the
vector position of the ith particle, V(r) is the repulsive inter-
particle interaction, and w,, and wy, are, respectively, the
confinement frequencies in the x and y directions. These fre-
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quencies are related by the expression wy, = \‘":onv, where «a
is the eccentricity of the elliptic confinement. In the present
study we consider a logarithmic interparticle interaction
V(r)=-BIn|r] and a screened Coulomb potential
V(7)=(q*/ €)exp(=|F| /\)/]F].

We can write the potential energy (1) in dimensionless
form if we express the coordinates, energy, temperature and
time, respectlvely, in the following units: ry=(28/ mwoy)” 2
Ey=0, Ty= ,BkB, where kp is the Boltzmann constant and
to=N2/ wy, in the case of a logarithmic confinement poten-
tial. The dimensionless potential energy is

E= E(ax +y?) - 21n|r-r )

i>j

For a screened Coulomb potential this becomes

N

Y exp(= wfr;— 1))
E=S (ad+y)+3 T TIE 3

i=1 j>i Ir;— rj|

with, respectively, for the units of length, energy, tempera—
ture, and time ry= (qzley)m where y= mwo 12, Ey=yr3,
Ty=Euk,', and 1,= \Z/wo} The dimensionless inverse
screening length, k=ry/\, is a measure of the range of the
interparticle interaction potential. All the results will be
given in dimensionless units.

The stable configuration is a local or global minimum of
the potential energy, which is only a function of the number
of charged particles N and the eccentricity « (and « in case
of a screened Coulomb interaction). Our numerical method
to obtain the stable-state configuration is based on the Monte
Carlo simulation technique supplemented with the Newton
method in order to increase the accuracy of the found energy
value [26]. By starting from many different random initial
configurations we believe that we were able to find all the
possible stable (i.e., ground state and metastable) configura-
tions. These configurations were discussed in our previous
paper [17].

To study the dynamical properties of a small cluster at a
specific temperature we implement the molecular dynamic
(MD) simulation in three different stages. (1) We use a vari-
ant of the velocity Verlet algorithm [28], which rescales the
velocity of the particles to bring the sample to a desired
temperature. The rescaling of the velocities in such an algo-
rithm implies that we are no longer following Newton’s
equations, and no data should be collected in this stage. (2)
The last configuration obtained in the previous step serves as
an initial condition in a subsequent molecular dynamics
(MD) simulation using the velocity Verlet algorithm, which
brings the system to a statistical equilibrium state. (3) The
last configuration in the second step is integrated in time
using the velocity Verlet algorithm while data are collected.
A typical measurement done during this latter stage is the
calculation of the averaged displacement of the particles
from its equilibrium position [16].
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FIG. 1. Particle trajectories for
a system with N=6 particles, dif-

ferent values of temperature, and
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three eccentricity confinement
values a=0.8, 0.6, and 0.3. The
scale is different in each figure,
1 but the distance between the ticks
is always one length unit.

III. MELTING TRANSITION FOR SYSTEMS WITH
LOGARITHMIC INTERPARTICLE POTENTIAL

In this section we demonstrate how the eccentricity of the
confinement potential affects the melting in systems with a
logarithmic interparticle potential. Therefore, we consider
systems ranging from N=6 up to N=60 particles. These ex-
amples involve clusters with a distinct number of shells. In
the following we show detailed results for four different
clusters, which contain typical melting processes we ob-
served: a system with one shell that encloses no particles (
N=6 particles), systems with one shell but enclosing par-
ticles (N=12 and 13 particles), and a system with two shells
(N=30 particles). Finally, we investigate larger clusters with
N=40, 50, and 60 particles. The melting phenomenon for
clusters with a different number of particles can be deduced
from these results. To acquire insight into the diverse melting
processes and their dependence on the eccentricity parameter
we show typical particle trajectories performed during a rela-
tively small time interval in a MD simulation. Next, different
melting temperatures are obtained quantitatively as a func-
tion of & by using Lindemann’s criterion. We will see that a
weak anisotropic system exhibits the same melting processes
as in a system with circular confinement potential, i.e., an-
gular melting followed by a radial melting. We show how the
melting temperature of these processes changes with the ec-
centricity of the confinement potential. For small and strong
anisotropic systems («<<0.5), an inhomogeneous melting
process appears untypical for circular systems, which we call
internal intershell melting.

The small cluster with N=6 particles has one shell con-
figuration (0,6) for a# 1 and (1,5) when a=1 and we will
investigate how the eccentricity of the confinement potential
influences the melting of such a system. Considering this
latter configuration as a starting position in a MD simulation,
we obtained the trajectory patterns shown in Fig. 1 for dif-
ferent values of the eccentricity and temperature. These tra-

jectories were obtained by collecting the position of the par-
ticles during a time interval of Ar=500. For small anisotropy,
for example, a=0.8, the system of N=6 particles exhibits the
well-known two-step melting process like for an isotropic
system. The first melting process, called angular melting,
occurs at the temperature 7=0.0082 [Fig. 1(a)], while radial
melting, where particles can jump between stable configura-
tions (0,6) and (1,5), occurs for a temperature of
T=0.0181 [Fig. 1(b)]. The first consequence of the aniso-
tropic confinement is that decreasing « leads to an increase
of the angular melting temperature. For example, for a rela-
tively high temperature 7=0.0135 and @=0.6 [Fig. 1(c)] the
particles are still oscillating around their equilibrium position
and no angular melting is observed. For an extremely aniso-
tropic system «=0.3 at low temperature, for example,
T=0.0048 [Fig. 1(d)], particles perform a simple oscillation
around their equilibrium position. However, for increasing
temperature, particles are first [Fig. 1(e)] able to occupy both
degenerated ground state configurations and consecutively,
in a second step at higher temperature 7=0.0129, the four
central particles lose their angular orientational order in a
dynamic process that we will call internal intrashell melting.
In contrast, the two particles located in the most extremum
position in the cluster have an oscillatory motion around
their equilibrium position. Also, we can verify from Figs.
1(e) and 1(f) that increasing the eccentricity of the confine-
ment potential in a system with N=6 particles induces re-
gions in the cluster having a different melting temperature. In
order to be able to describe these melting processes quanti-
tatively, we distinguish two regions in Fig. 1(d). Region 1
holding two particles is placed at the left and right extremum
of the cluster while region 2, which is the center of the clus-
ter, contains four particles.

In previous work [16] the melting temperature was deter-
mined quantitatively by calculating the radial and angular
averaged displacement. However, for anisotropic systems
with elliptic confinement it is more convenient to calculate
the x averaged displacement defined as
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FIG. 2. The x-averaged displacement for regions 1 [full squares,
left and right particles in Fig. 1(d)] and 2 [empty squares, center
four particles in Fig. 1(d)].

2
u =

1
Xy N,yl

N\

() = ey, (4)

N
i=1

where y=1 and 2 indicates the region number, N, is the
number of particles in region v, x,,; is the x coordinate of the
ith particle of group v, and a is the average distance between
the particles. The calculation of the x-averaged displacement
as function of temperature allowed us to determine the dif-
ferent melting processes quantitatively.

The reason to use the x-averaged displacement is that for
high anisotropic confinement the system presents regions
along the x direction with distinct dynamical properties. We
define the melting temperature as the temperature at which
the x-averaged displacement changes its linear temperature
dependence into a more rapid increase.

Through a MD simulation where we collected data during
a time interval of Ar=10° we obtained the temperature de-
pendence of the x-averaged displacement (Fig. 2) for the
particles in regions 1 (full squares) and 2 (empty squares) for
the system with N=6 particles and a«=0.3. We can clearly
see three melting regions and two plateaus. The first melting
process, where the system becomes able to oscillate between
both degenerated ground-state configurations starts at the
temperature 7, =2.46 X 1073, For this latter value of the tem-
perature the x averaged displacement of group two (u,,)
changes its initial slope present at low temperatures. A first
plateau which presents a dynamical equilibrium is found for
the temperature range from 7,=5.73X 1073 to T;=11.24
X 1073. For this temperature interval, u,, shows a very small
linear increase. The internal angular melting starts to occur at
T;=11.24X 107 when u,, shows a sudden increase. A sec-
ond plateau for u,, occurs for the range of temperatures vary-
ing from 7,=17.22 X 1073 to T5=26.52 X 1073 corresponding
to a complete internal angular melting. This melting process
is followed by a full melting, which happens at temperature
T5=26.52X 107 where both x averaged displacement of
groups 1 (u,;) and 2 (u,,) diverges.

Let us now look at a larger cluster. Reference [8] showed
that large anisotropic confined systems have a ground-state
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configuration with a regular arrangement for which the pack-
ing is close to a hexagonal symmetry. This regular arrange-
ment is induced by the anisotropic confinement. The ground-
state configuration for N=13 particles and a=0.4 also
exhibits a regular structure. We investigate the melting pro-
cess as a function of the eccentricity of the confinement po-
tential. The melting process for the system with N=13 par-
ticles strongly depends on the eccentricity and, in particular,
for a=0.4 the system exhibits a distinct melting pattern. We
present in Fig. 3 typical trajectory patterns. For an aniso-
tropic confinement of @=0.7 a system with N=13 particles
(the first row in Fig. 3) exhibits intershell melting at a tem-
perature of 7=0.002 44 [Fig. 3(b)]. Radial melting occurs at
T=0.009 56 [Fig. 3(d)] where the central particle can jump to
the outer shell and a particle in the shell can jump to the
central area. For a larger temperature (7=0.015 97) the two
neighbor particles of the central particle are also able to jump
to the outer shell and therefore also contribute to the radial
melting process [Fig. 3(e)]. With increasing anisotropy the
intershell melting temperature also increases. For a more an-
isotropic system with a=0.6 (the second row in Fig. 3) we
did not find intershell melting even for 7=0.006 03 [Fig.
3(g)]. For this system intershell and radial melting is found at
T7=0.0091 and T=0.017, respectively, as shown in Figs. 3(h)
and 3(i). If we increase the eccentricity further, one can see
from the third row of Fig. 3 for a=0.45 that intershell melt-
ing no longer occurs. Increasing the temperature leads imme-
diately to a full radial melting. Typical trajectories showing
the radial melting are displayed in Fig. 3(0) and 3(p) for the
temperatures 7=0.009 56 and 7=0.012 43, respectively. A
traditional intershell melting, like the one present in a circu-
lar confined system, also does not appear for the system with
eccentricity a=0.4 (the fourth row in Fig. 3). However, a
different type of melting process was found, a new internal
shell is formed, which starts to melt first with increasing
temperature, while the particles located at the corners only
perform small oscillations [see Fig. 3(t) for T=0.0099]. We
denote this type of melting as internal intershell melting and
is a consequence of a temperature-induced breakup of the
system into different regions. For 7=0.01336 radial melting
is found [Fig. 3(u)].

The particle trajectories for increasing temperatures in the
last row of Fig. 3 show that the dynamical behavior of a
cluster with N=13 particles and a=0.4 strongly varies along
the x direction of the cluster. We can distinguish two regions
with different dynamic properties in Fig. 3(q). Region 1
placed in the extreme left side of the cluster has three par-
ticles forming a triangular arrangement; and region 2, which
is the center of the cluster, has seven particles with one at the
origin of the coordinate system and the six others are placed
in the corner of a hexagon around the central particle. The
melting temperature for the system with 13 particles and
eccentricity a=0.4 and 0.6 was determined by calculating
the x-averaged displacement. Besides the x-averaged dis-
placement of regions 1 and 2 we defined two new expres-
sions: the x-averaged displacement of particles of the outer
shell, u,,, and the x-averaged displacement for the particles
inside the shell, u,;. With these two latter definitions we can
also characterize the critical temperature of the intershell
melting process. Figure 4(a) shows the dependence of the
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FIG. 3. Particle trajectories obtained during a time interval Ar=500 for a system with N=13 particles. Each row corresponds to the same
value of a and along the column from left to right the temperature increases. The distance between the ticks is one length unit.

x-averaged displacement as a function of temperature for
groups of particles in regions1 (full squares) and 2 (empty
squares) for a system with N=13 particles and eccentricity
a=0.4. For increasing temperature, the latter system first
exhibits an internal intershell melting at temperature
T::n=2.65% 1073 and second a radial melting process at tem-
perature 7,=5.42 X 107, For a less anisotropic confinement
potential, «=0.7, the system with N=13 particles exhibits an
intershell melting process at temperature T}, =0.13X 1073
[Fig. 4(b)], where the x-averaged displacement of particles in
the shell diverges. A full melting process is reached at
T,=2.63X 1073 when u,; starts to diverge.

It is well known that the so-called magic-number clusters
in systems with circular confinement have a higher intershell
melting temperature, which is a consequence of a commen-
surability between particles in different shells. We also inves-
tigate the influence of the symmetry on the internal intershell
melting process. Differently from the configuration for N
=13 particles and @=0.4, the configuration for N=12 par-
ticles and a=0.4 is not symmetric with respect to a reflection
around x=0. The trajectories for the system with N=12 par-
ticles and @=0.4 at the average temperature 7=0.0004 and

T=0.0021 are shown, respectively, in Figs. 5(a) and 5(b).
The dynamical behavior of the system is not homogeneous
along the x direction. While particles in the center of the
cluster exhibit internal intershell melting [Fig. 5(b)], the par-
ticles at the corners of the cluster oscillate around their equi-
librium position. For a quantitative characterization of the
different melting processes present in the system we defined
two different regions in the cluster shown in Fig. 5(a). Re-
gion 1 placed on the extreme left side of the cluster has three
particles forming a triangular arrangement, while region 2 is
the center of the cluster and contains 6 particles with five
particles forming a pentagon, which encloses the sixth par-
ticle. The dependency of the x-averaged displacement on
temperature for the particles in regions 1 (full squares) and 2
(empty squares) for the system with N=12 particles and ec-
centricity @=0.4 is shown in Fig. 4(c). The internal angular
and radial melting temperatures for this system are, respec-
tively, T;;,,=1.12X 107 and 7,=5.66X 10~ as indicated in
Fig. 4(c). At the same eccentricity of @=0.4 the value of the
internal intershell melting temperature is higher for the sys-
tem with N=13 particles (T;;,,=2.65 X 1073) than for the sys-
tem with N=12 particles showing that the asymmetry of the
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cluster decreases the stability of the cluster. In order to define
the intershell melting temperature for the system with N
=12, we also defined the x-averaged displacement for the
particles in the outer shell, u,,, and for the particles inside the
shell, u,;. The intershell melting temperature for the system
with N=12 and @=0.7 is T;,=0.74 X 1073 [Fig. 4(d)], which
is followed by a radial melting at 7,=3.40X 1073, We also
confirmed that the intershell melting temperature increases
with increasing anisotropy of the confinement potential. The
critical temperature for intershell melting for the system with
N=13 particles and eccentricity «=0.7,0.65, and 0.6 are,
respectively, 7;,=0.32X 1073, 0.85X 1073, and 2.45X 1073,
while for the system with N=12 and eccentricity a=0.7,

L N=12 1t ]
N=12
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FIG. 5. Particle trajectories obtained for a time interval
Ar=500 for a system with N=12 particles and anisotropy confine-
ment of a=0.4. The distance between the ticks is one length unit.

0.65, and 0.6, the critical temperatures are substantially
larger and are, respectively, T;,=0.74X1073,1.57 X 1073,
and 2.7 X 1073,

The angular melting can qualitatively be understood by
considering the momentum transfer (i.e., collisions) between
nearest neighbors in a shell. At low temperature, the inter-
shell rotational mode dominates the dynamics of the system.
Angular melting can occur when a critical kinetic-energy
value is reached to overcome the barrier and particles move
predominantly in the same clockwise or counterclockwise
direction. However, when a strong enough anisotropic con-
finement is applied, the shell structure is stretched along the
weakest confinement direction and a collision between two
particles does not cause the particle at the corner to make a
turn. This stops the original angular melting and the oscilla-
tions of the particles at the corners become relatively smaller
than those of the particles in the middle of the cluster. Under
these circumstances, radial melting becomes the first melting
process for increasing temperature. For higher anisotropy,
the shell structure is restored in the center of the cluster
where angular melting becomes possible again.

In order to see if the above physics is also present at
larger systems, we took N=30 particles for which the
ground-state configuration has two shells. This will tell us
how the number of shells influences the melting processes
found previously for systems with one shell. We found that
the melting for this latter system is very similar to the
melting process for a system with N=13 particles.
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We present in Fig. 6 the trajectory patterns for the system
with N=30 particles and different values of the eccentricity.
For an eccentricity parameter of a=0.7 (first row in Fig. 6)
and increasing temperature the system first exhibits an inter-
shell melting process at an average temperature of
T=0.001 18 [Fig. 6(b)] where the outer shell can rotate, fol-
lowed by a second intershell melting process at
T=0.003 74 [Fig. 6(c)] involving the second shell in the clus-
ter. Radial melting occurs at 7=0.007 12 [Fig. 6(d)] where
the central particle can jump to the second shell. The ar-
rangement of particles inside the outer shell corresponds to
the ground-state configuration for the smaller system with
N=13 particles and eccentricity «=0.7. The melting pattern
exhibited by the particles inside the external shell (the first
row of Fig. 6) is very similar to the melting pattern exhibited

by the system with N=13 and a=0.7 (the first row of Fig. 3).
For an eccentricity of @=0.6 (the second row of Fig. 6) an
intershell melting process is found at an average temperature
of 7=0.000 89 [Fig. 6(f)] for the outer shell. For increasing
temperatures we see [Figs. 6(g) and 6(h)] that the system
does not exhibit the previous second intershell melting, in-
stead a radial melting takes place for the particles inside the
outer shell. The set of particles inside the outer shell of this
latter system (the second row of Fig. 6) undergoes a similar
melting process like the one found for the system with
N=13 particles and a=0.45 (the third row of Fig. 3). Finally,
for a larger anisotropy a=0.25, the internal intershell melting
process, is now the first melting process, which appears for
increasing temperatures [Fig. 6(j)] as found previously for
systems with a smaller number of particles, N=6, 12, and 13

0.10 — r T r r T T T T T T T T T T T T T T T
[e]
n -
N=230 . N=30 N_— 30 .
008 o =07 qr =06 1T a=0.25 n 4
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3
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FIG. 7. (a), (b), and (c) show the temperature dependence of the x-averaged displacement for the system with N=30 particles and the
value of the eccentricity confinement of @=0.7,0.6, and 0.25, respectively. In (a) and (b) u,,, increase immediately beyond 0.1 for 7> 0.
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FIG. 8. Maximum values of the anisotropy confinement, as a
function of the number of particles, for which internal intershell
melting occurs.

particles. We can see in Fig. 6(j) that the three particles in the
lateral extremum at both sides of the cluster oscillate around
their equilibrium position while a shell involving 17 particles
in the center of the cluster is formed. This shell encloses
seven particles, which forms a line in the center of the shell
and develops an oscillatory motion. For increasing tempera-
ture, radial melting occurs [Fig. 6(1)] at a temperature T
=0.010 76 where particles inside the shell can jump to the
shell and vice versa. We notice that for this melting stage
both groups of three particles beside the shell still do not
melt and exhibit an oscillatory motion. For a higher tempera-
ture of 7=0.0164 [Fig. 6(m)] the system exhibits full melting
involving all particles in the system.

The temperature dependence of the x-averaged displace-
ment and the melting temperature for the systems with
N=30 particles and «=0.7,0.6, and 0.25 are shown in Fig. 7.
For an eccentricity of @=0.7, Fig. 7(a) shows the depen-
dence of the x-averaged displacement as a function of tem-
perature for the particles inside the external shell and inside
the internal shell, u,,, and u,, respectively, and for the
groups of particles enclosed by the internal shell, u,;. The
sudden increase of these quantities determine, respectively,
the following melting temperatures: intershell melting tem-
peratures related to the external and internal shells, 7},,, and
T;,.:» respectively, and the radial melting temperature, 7. For
the latter system, the external and internal shells exhibit an
intershell melting process at T,,=0.006X 1073 and
T;,=1.28 X 1073, respectively, for increasing temperatures.
A radial melting process occurs at T,=2.41 X 1073, For an
eccentricity of a=0.6, the value of the intershell melting
temperature associated with the external shell is 7;,,=0.22
X 1073, Now no angular melting related to the internal shell
is observed. For this situation both x-averaged displacements
uy, and u, simultaneously diverge at the temperature
T,=1.64X 1073, Finally, Fig. 7(c) presents the melting tem-
perature for the system with @=0.25. An internal intershell
melting occurs at temperature T};,=2.02 X 1073, This latter is
followed by two radial melting processes: first, a melting
process involving the particles in the center of the cluster,
which happen at T,;=4.15X 107 and second, a melting of
the group of particles positioned in the edges of the cluster
that occurs at the temperature T,,=5.56 X 1073,
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FIG. 9. From top to bottom: the first column shows the ground-
state configurations for systems with @=0.22 and N=40, 50, and
60, respectively. The second column exhibits the temporal trajec-
tory of the same systems at some specific temperature. The distance
between the ticks is five length units.

In order to better understand how internal intershell melt-
ing depends on the size of the cluster, we calculated the
critical eccentricity parameter, defined as the largest eccen-
tricity for which the internal intershell melting occurs, for the
following different systems: N=12,13,15,18,21,24,27,30,
and 33 particles (Fig. 8). Transitions between the different
melting phases of small systems is continuous (only in the
thermodynamic limit do we have a well-defined phase tran-
sition). To calculate the critical eccentricity parameter we
first calculated the x-averaged displacements u,,u,, and u,,
similarly, as was previously done for the system of N=30
particles and a=0.25 (Fig. 7). Internal intershell melting oc-
curs only if the averages u,,u,;, and u,, increase rapidly
over a small temperature range. We determined both the
highest value of the eccentricity parameter for which the iim
occurs and the lowest value of the eccentricity parameter for
which iim no longer occurs. The critical eccentricity param-
eter was then defined as the geometric average of those val-
ues and the error bar as half of their difference. From Fig. 8
we notice that the internal intershell melting is always
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FIG. 10. (a), (b), and (c) show, respectively, the temperature dependence of the x-averaged displacement for systems with N=40, 50, and
60 particles and for a value of the eccentricity confinement of a=0.22.

present in small size systems and furthermore, that the value
of the critical eccentricity decreases as the number of par-
ticles increases. Systems with more than 33 particles were
found in an undefined dynamic phase between internal inter-
shell melting and inhomogeneous melting. Additionally, we
investigated larger systems such as N=40, 50, and 60 par-
ticles using a qualitative (Fig. 9) and quantitative (Fig. 10)
approach. The first and second columns of Fig. 9 show, re-
spectively, the ground-state configurations and the melting
patterns for the larger systems. Their melting pattern indi-
cates that the set of three particles in the far left and right of
the clusters have a higher melting temperature than the cen-

ter region of the cluster. To confirm this quantitatively we
calculated the x-average displacements u,, and u,; (Fig. 10)
related, respectively, with the set of three particles placed on
the extremum left and right edges of the cluster and the re-
gion between these clusters, i.e., the center region. We con-
firm that inhomogeneous melting pervades for large systems,
where the regions at the edges exhibit higher melting tem-
perature contrasting with the dynamic properties found in the
rest of the cluster. In other words, u,; and u,, increase rap-
idly for different values of the temperature. We found (Fig.
10) that the melting temperature for clusters with N=40, 50,
and 60 are T,,=10.11X 1073, 9.47% 1073, and 9.54X 1073,
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FIG. 11. Particle trajectories obtained during a time interval Az=500 for a system with N=30 particles. Each row corresponds to the same
value of a and along the column from left to right the temperature is increased. The distance between the ticks is one length unit.
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FIG. 12. Maximum values of the anisotropy confinement as a
function of the screening parameter for which the internal intershell
melting occurs.

respectively. The region in the middle of the clusters has
lower melting temperatures: 7,;=3.22X 1073, 4.82X 1073,
and 5.41 X 1073, respectively.

IV. MELTING TRANSITION FOR SYSTEMS WITH
SCREENED COULOMB INTERPARTICLE POTENTIAL

In the previous section we found that anisotropic confine-
ment strongly influences the melting process of classical par-
ticles interacting through a logarithmic interparticle poten-
tial. We saw that new melting processes appear, as for
example, the internal intershell melting process. Many sys-
tems however, for example, dusty plasmas, do not interact
through a logarithmic potential but through a screened Cou-
lomb interparticle potential. In this section we investigate the
dependence of the new melting processes on the range of the
interparticle interaction. First, we show the temporal trajec-
tories for the system with N=13 particles and screening pa-
rameter k=5. The melting process found for this latter sys-
tem is compared with the one present for the system with
logarithmic interparticle potential for which the typical tra-
jectory patterns were shown in Fig. 3. Secondly, we show the
relation between the screened Coulomb parameter « and the
eccentricity of the confinement potential « for which internal
intershell melting can occur.

The trajectory patterns for the system with N=13 par-
ticles, k=5, and different values of the eccentricity of the
confinement potential are displayed in Fig. 11. For an aniso-
tropic confinement of a=0.4 (the first row of Fig. 11), the
first melting process occurs at 7=0.004 61 [Fig. 11(h)] and it
involves only the particles in the left side of the cluster. The
reason for such asymmetric melting is due to the short
time interval over which this trajectory pattern is shown. The
time interval was too short for the system to visit the com-
plete accessible phase space. For higher temperature
(T=0.005 24), both groups of particles in the left and right
sides of the cluster participate in the melting process. Figure
11(j) shows that for T=0.011 61 radial melting has set in.
This local intershell melting, which involves particles in the
lateral areas of the cluster, is different from the intershell
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melting found in the previous system with logarithmic inter-
particle potential whose trajectory pattern is shown in the
first and second rows of Fig. 3, respectively, at an anisotropic
confinement of a=0.7 and a=0.6. In the latter case the in-
tershell melting involves all particles in the shell while for
local intershell melting, particles in the shell start to form
two groups of particles, which are subjected to independent
melting processes. The local intershell melting in the system
is a consequence of the short-range interaction potential
when particles in opposite sides of the shell have their repul-
sive potential decreased. With increased anisotropy (@=0.2)
the radial melting process becomes the first melting process
to occur with increasing temperature. This effect of the an-
isotropic confinement on the melting process was also veri-
fied previously for the system with logarithmic interparticle
potential (the thirdrow of Fig. 3). The internal intershell
melting process is the first melting process for the system
with anisotropy @=0.15 (the third row of Fig. 11). This phe-
nomenon also occurred for the system with logarithmic in-
terparticle potential but only for an eccentricity of a=0.4.
In the absence of screening, i.e., for k=0, previous studies
[16,29,30] have shown that the particles arrange themselves
in rings. The number of particles on each ring and the num-
ber of rings depend on N and were cataloged into a
Mendeleev-type of table [16,29]. For small values of x we
still recover this ring structure; the population of each ring
can be a function of «, but for sufficiently large screening the
particles arrange themselves into a finite-size triangular
Wigner crystal. Even in a system with anisotropic confine-
ment, increasing the screening parameter is able to induce a
triangular arrangement of particles. We found that the inter-
nal intershell melting also appears for systems with a value
of the screening parameter of x=0,1,2,10, and 20. We
found that for each of these screening parameters there is a
maximum value of the eccentricity parameter « of the con-
finement for which the internal intershell melting is able to
occur, which we call the critical eccentricity «,. Figure 12
shows that the value of the critical eccentricity «, decreases
with increasing screening parameter k. This is a consequence
of the formation of a triangular arrangement of the particles
with increasing screening parameter. Increasing the aniso-
tropic confinement further recovers the arrangement of Fig.
3(q) and internal intershell melting becomes possible again.

V. SUMMARY AND CONCLUSIONS

The effect of the eccentricity of the confinement potential
on the melting process of anisotropically confined particles
interacting through a repulsive interparticle potential was in-
vestigated. First, a qualitative investigation concerning short-
time temporal trajectories performed for small and interme-
diate size systems with N=6, 12,13, and 30 particles and
different values of the eccentricity confinement revealed the
principal melting properties of anisotropic systems. Angular
oscillation substantially influences the dynamic processes in
weakly anisotropic confined clusters. At first sight, increas-
ing the anisotropy of the confinement diminishes the impor-
tance of angular oscillation on the dynamic of the system.
However, for some critical value of the eccentricity, the an-
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gular melting process is recovered through a pattern forma-
tion called internal intershell melting. This latter dynamic
mechanism can be well understood in terms of the moment
transferred between particles belonging to the same shell.

We found that increasing the anisotropy of the confine-
ment potential drives the system through the following dif-
ferent melting sequences: (1) a similar melting pattern as
present in a circular system, i.e., intershell melting followed
by radial melting; (2) there is only radial melting, and (3) an
angularlike melting appears, which we call internal intershell
melting since it involves only the particles located in the
central region of the cluster. This latter phase transition is
followed by radial melting.

The influence of the number of particles on the melting
process is as follows. For small systems, for example,
N=12 and 13 particles both with eccentricity a=0.4, the
arrangement of the particles strongly influences the value of
the internal intershell melting temperature which reminds us
to the dynamic stability found in magic-number configura-
tions for isotropically confined systems. This is a direct con-
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sequence of the triangular arrangement on the angular melt-
ing process. Furthermore, we found that for larger systems
(N=40, 50, and 60 were considered) internal intershell melt-
ing is not present anymore but inhomogeneous melting still
persists.

We confirmed that inhomogeneous melting is present in-
dependently of the range of the interparticle interaction by
considering Coulomb and screened Coulomb potentials and
should therefore be observed in systems as dust plasmas,
colloidal suspensions, and metallic balls under anisotropic
confinement. In summary, the main message of the paper is
inhomogeneous melting occurs in anisotropically confined
clusters and its appearance in small systems occurs in a
distinct form called here internal intershell melting.
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